Πέμπτη, 14 Δεκεμβρίου 2017

Πότε δημιουργείται στάσιμο κύμα;

Κατά μήκος ενός γραμμικού ελαστικού μέσου διαδίδεται ένα κύμα με εξίσωση:
y=Α∙ημ(ωt-2πx/λ)
Το παραπάνω κύμα μπορεί να συμβάλει με ένα δεύτερο κύμα που διαδίδεται στο ίδιο μέσο, με εξίσωση:
α) y1 = Α∙ημ(ωt+2πx/λ)
β) y2 = -Α∙ημ(ωt+2πx/λ)
γ) y3 = Α∙ημ2π(t/Τ+x/λ+ ¼ )
δ) y4 = Α∙ημ(ωt-2πx/λ-π/3)
i) Σε ποιες περιπτώσεις θα έχουμε σχηματισμό στάσιμου κύματος στο ελαστικό μέσον;
ii) Σε ποια ή ποιες περιπτώσεις το στάσιμο κύμα που θα σχηματισθεί θα έχει κοιλία στη θέση x=0;
iii) Στις περιπτώσεις που δεν σχηματίζεται στάσιμο κύμα, ποιο θα είναι το αποτέλεσμα της συμβολής;
ή




Δευτέρα, 11 Δεκεμβρίου 2017

Στάσιμο και τρέχον κύμα

Στο σχήμα βλέπετε στιγμιότυπα δύο κυματομορφών, μιας περιοχής ενός γραμμικού ελαστικού μέσου (μιας χορδής), τα οποία ελήφθησαν κάποιες στιγμές. Η μορφή (Ι) δείχνει τμήμα της χορδής όταν πάνω της έχει σχηματισθεί στάσιμο κύμα, ενώ η (ΙΙ), όταν στην ίδια περιοχή διαδίδεται ένα αρμονικό κύμα. Στο σχήμα επίσης φαίνεται η ταχύτητα ταλάντωσης δύο σημείων Β και Γ της χορδής.
i)  Το πλάτος του τρέχοντος κύματος (ΙΙ) είναι ίσο με το πλάτος ταλάντωσης μιας κοιλίας στο στάσιμο;
ii) Αν Ε1 η μέγιστη κινητική ενέργεια μιας στοιχειώδους μάζας δm  στη θέση μιας κοιλίας και Ε2 η αντίστοιχη μέγιστη κινητική ενέργεια μιας ίσης μάζας δm στο τρέχον κύμα, ισχύει:
α) Ε12,  β) Ε12,   γ) Ε1> Ε2.
iii) Να σχεδιάσετε αντίστοιχο σχήμα που να εμφανίζονται ξανά τα δύο στιγμιότυπα (για την ίδια περιοχή), μετά από χρόνο Δt= ¼ Τ, όπου Τ η περίοδος του τρέχοντος κύματος.
ή


Σάββατο, 9 Δεκεμβρίου 2017

Εξαναγκασμένη ταλάντωση με διακροτήματα;

Έχουμε συναρμολογήσει την πιο κάτω πειραματική διάταξη για να μελετήσουμε το φαινόμενο του συντονισμού.
 Η λεπτή μεταλλική ράβδος έχει τη δυνατότητα να εκτελεί ταλάντωση με τη βοήθεια του διεγέρτη και του ελατηρίου. O διεγέρτης ήταν σε λειτουργία για 8,0 δευτερόλεπτα. Στην πιο κάτω γραφική παράσταση φαίνεται η μετατόπιση του ελεύθερου άκρου της ράβδου από την κατακόρυφη θέση ως συνάρτηση του χρόνου.
Ποιες από τις παρακάτω απαντήσεις είναι σωστές και ποιες λάθος;
i) Η συχνότητα ταλάντωσης του διεγέρτη είναι 4 Hz.
ii) Η ιδιοσυχνότητα της ράβδου είναι 1 Hz.
iii) Εμφανίζεται το φαινόμενο του συντονισμού.
iv) Το μέγιστο πλάτος ταλάντωσης της ράβδου είναι 20 cm.
v) Με την επίδραση του διεγέρτη η ράβδος εκτελεί σύνθετη ταλάντωση, παρουσιάζοντας διακροτήματα.
Να δικαιολογήσετε τις απαντήσεις σας
ή

Ένα θέμα από το διαγωνισμό ΑΣΕΠ Κύπρου, λίγο...πειραγμένο.

Πέμπτη, 7 Δεκεμβρίου 2017

Μεταφορική κίνηση ή κύλιση;

Σε λείο οριζόντιο επίπεδο ηρεμεί μια σανίδα μάζας m=20kg, πάνω στην οποία ηρεμεί ένας ομογενής τροχός της ίδιας μάζας m. Ο συντελεστής οριακής στατικής τριβής μεταξύ τροχού και σανίδας είναι μs=0,5.
i)  Σε μια στιγμή ασκούμε στο κέντρο Ο του τροχού μια σταθερή οριζόντια δύναμη F, μέτρου 80Ν.
α) Υποστηρίζεται η άποψη ότι ο τροχός θα κυλίσει, χωρίς να κινηθεί η σανίδα. Να εξηγήσετε (χωρίς μαθηματικές εξισώσεις) αν η άποψη αυτή είναι σωστή ή λανθασμένη.
β) Να υπολογίσετε την επιτάχυνση του κέντρου μάζας Ο του τροχού.
γ) Να βρεθεί επίσης η επιτάχυνση της σανίδας.
ii) Επαναλαμβάνουμε το πείραμα, αλλά τώρα ασκούμε ταυτόχρονα και στον τροχό και στη σανίδα  δύο ίσες δυνάμεις F1=F2=80Ν, όπως στο σχήμα. Να υπολογίσετε τις επιταχύνσεις που θα αποκτήσουν ο τροχός και η σανίδα.
Δίνεται g=10m/s2 ενώ η ροπή αδράνειας του τροχού ως προς κάθετο άξονα που περνά από το κέντρο του Ο Ι= ½ mR2.
ή
Μεταφορική κίνηση ή κύλιση;




Τετάρτη, 6 Δεκεμβρίου 2017

Συμβολή δύο ομοίων κυμάτων.

Κατά μήκος ενός γραμμικού ελαστικού μέσου και από αριστερά προς τα δεξιά (προς τη θετική κατεύθυνση) διαδίδονται δύο αρμονικά κύματα με το ίδιο πλάτος Α=0,2m και την ίδια συχνότητα f=1Ηz. Η ταχύτητα διάδοσης των κυμάτων είναι ίση με υ=2m/s. Σε ένα σημείο Ο, το οποίο θεωρούμε ως αρχή μέτρησης των αποστάσεων (x=0), το πρώτο κύμα φτάνει κατά τη χρονική στιγμή t=0 και το δεύτερο κύμα κατά τη χρονική στιγμή t1=1,25s. Θεωρείστε ότι εξαιτίας κάθε κύματος το σημείο Ο αρχίζει να κινείται προς την θετική φορά (προς τα πάνω).
i)  Να γραφεί η εξίσωση του πρώτου κύματος και να σχεδιάστε το στιγμιότυπό του τη στιγμή t1 και για τα σημεία του θετικού ημιάξονα x.
ii)  Να βρεθεί η εξίσωση του κύματος για το δεύτερο κύμα.
iii) Να βρεθεί το αποτέλεσμα της συμβολής των δύο παραπάνω κυμάτων και να υπολογιστεί η απομάκρυνση ενός σημείου Ρ, στη θέση x=1m τη χρονική στιγμή t2=2,5s.
iv) Να σχεδιάσετε τη γραφική παράσταση y=f(x) της απομάκρυνσης των διαφόρων σημείων του μέσου και για τα σημεία του θετικού ημιάξονα, τη χρονική στιγμή t2.

ή

Δευτέρα, 4 Δεκεμβρίου 2017

Μείωση του πλάτους του κύματος και συμβολή

Στην παραπάνω εικόνα, βλέπουμε τη διάδοση ενός κύματος στην επιφάνεια ενός υγρού. Μπορούμε εύκολα να παρατηρήσουμε ότι όταν απομακρυνόμαστε από την πηγή, το πλάτος ταλάντωσης μειώνεται. Αυτό δικαιολογείται, αφού καθώς το κύμα απλώνεται στην επιφάνεια, η ενέργεια που παρέχει η πηγή και μεταφέρεται από το κύμα, διαμοιράζεται συνεχώς και σε περισσότερα υλικά σημεία.
Έστω τώρα ότι στην επιφάνεια ενός υγρού, έχουμε δύο σύγχρονες πηγές κύματος Ο1 και Ο2 οι οποίες αρχίζουν να ταλαντώνονται κατακόρυφα, τη στιγμή t0=0, με εξισώσεις y=8·ημ2πt (y σε mm, t σε s.) δημιουργώντας έτσι εγκάρσια κύματα, τα οποία διαδίδονται με ταχύτητα υ=0,2m/s στην επιφάνεια του υγρού.
 Παρατηρούμε ότι ένα σημείο Μ, στο μέσον της απόστασης των δύο πηγών ταλαντώνεται με πλάτος 12mm.
i) Ποια η διαφορά φάσης των κυμάτων που φτάνουν στο Μ από τις δύο πηγές;
ii) Ένα σημείο Β της επιφάνειας του υγρού βρίσκεται πάνω στη μεσοκάθετο της Ο1Ο2 απέχοντας κατά y από το μέσον Μ.
α) Τη στιγμή που η φάση της απομάκρυνσης του Μ είναι 10π  (rad), η αντίστοιχη φάση του Β μπορεί να είναι:
a) 8π   (rad),   b) 10π   (rad),   c) 12π (rad)
β) Το πλάτος ταλάντωσης του σημείου Β μπορεί να είναι:
a)  10mm,   b) 12mm,   c) 14mm,  d) 16mm
iii) Για το σημείο Γ του σχήματος ισχύει r1-r2=0,7m, όπου r1, r2 οι αποστάσεις του από τις δυο πηγές. Το πλάτος ταλάντωσης του σημείου Γ, μετά την συμβολή των δύο κυμάτων, μπορεί να είναι:
a) 0 mm,    b) 2mm,    c) 8mm,     d) 16mm.
Να δικαιολογήσετε τις απαντήσεις σας.
ή

Κυριακή, 3 Δεκεμβρίου 2017

Άλλο ένα διάγραμμα φάσης

Μια πηγή κύματος ξεκινά την ταλάντωσή της τη στιγμή t0=0 δημιουργώντας ένα αρμονικό κύμα, το οποίο διαδίδεται κατά μήκος ενός γραμμικού ελαστικού μέσου. Στο διπλανό διάγραμμα δίνεται η φάση της απομάκρυνσης των σημείων του μέσου τη χρονική στιγμή t1=3s.
i)  Το κύμα αυτό διαδίδεται προς τα δεξιά ή προς τα αριστερά και γιατί; Ποια είναι η θέση της πηγής του κύματος;
ii) Να βρεθεί η περίοδος και το μήκος του κύματος.
iii) Ποια η φάση της απομάκρυνσης του σημείου Ο, στη θέση x=0, τις χρονικές στιγμές:
α) t1=3s και  t2=4,8s.
iv) Να βρεθεί η εξίσωση του κύματος, αν το πλάτος του είναι 0,2m;
iv) Να σχεδιάστε το στιγμιότυπο του κύματος την παραπάνω στιγμή  t1.
ή




Τετάρτη, 29 Νοεμβρίου 2017

Φάσεις και διαφορές φάσεων σε ένα κύμα.

Κατά μήκος ενός γραμμικού ελαστικού μέσου και προς τα δεξιά, διαδίδεται ένα κύμα και στο πρώτο σχήμα βλέπετε τη μορφή του μέσου τη στιγμή t=0. Αν το σημείο Γ, στο οποίο φτάνει το κύμα τη στιγμή αυτή, απέχει 0,8m από το σημείο Β και αρχίζει να ταλαντώνεται με εξίσωση απομάκρυνσης την:
yΓ=0,2∙ημ4πt  (S.Ι.)
i) Να υπολογιστούν η συχνότητα και η ταχύτητα διάδοσης του κύματος.
ii) Να γραφεί η εξίσωση της απομάκρυνσης (y=f(t)) για το σημείο Β και να γίνει η γραφική της παράσταση μέχρι τη χρονική στιγμή t1=0,75s.
iii) Να βρεθεί η εξίσωση της φάσης της απομάκρυνσης του σημείου Β σε συνάρτηση με το χρόνο και:
α) Να παρασταθεί γραφικά μέχρι τη στιγμή t1.
β)  Να βρεθεί η διαφορά φάσης μεταξύ των σημείων Β και Γ.
iv) Σε μια άλλη περίπτωση, κατά μήκος του ίδιου ελαστικού μέσου, διαδίδεται ένα αρμονικό κύμα και στο δεύτερο σχήμα, βλέπετε τη μορφή μιας περιοχής του μέσου, κάποια στιγμή που πήραμε ως t=0. Τη στιγμή αυτή το σημείο Κ βρίσκεται σε ακραία θέση ταλάντωσης, ενώ το σημείο Λ έχει ταχύτητα ταλάντωσης, όπως στο σχήμα.
α) Αν η οριζόντια απόσταση των δύο σημείων είναι Δx=0,7m, να βρεθεί η συχνότητα του δεύτερου κύματος.
β) Αν κάποια στιγμή t2 το σημείο Κ έχει φάση απομάκρυνσης 12π (rad) ποια θα είναι η αντίστοιχη φάση του σημείου Λ;
ή




Πέμπτη, 23 Νοεμβρίου 2017

Δυο κύματα στο ίδιο μέσον

Κατά μήκος ενός γραμμικού ελαστικού μέσου διαδίδονται με αντίθετη φορά δυο κύματα, με αποτέλεσμα κάποια στιγμή, η μορφή μιας περιοχής του μέσου, να είναι όπως στο πάνω σχήμα.
i)  Αντλώντας πληροφορίες από το σχήμα, να απαντήσετε στις παρακάτω ερωτήσεις:
Α) Αν η περίοδος του (1) κύματος είναι Τ1=0,5s, τότε η περίοδος του (2) κύματος είναι ίση:
α) Τ2=0,3s,    β) Τ2= 1/3 s,     Τ3= 2/3 s,     δ) Τ2=0,8s.
Β) Να σχεδιάστε στο σχήμα τις ταχύτητες ταλάντωσης των σημείων Β και Γ. Ποια από τις δύο έχει μεγαλύτερο μέτρο;
Γ) Μετά από λίγο, μια στιγμή που θεωρούμε t=0, τα δυο κύματα συναντώνται στο σημείο Μ, όπως στο δεύτερο σχήμα. Το σημείο Μ αμέσως μετά:
α) Θα κινηθεί προς τα πάνω.
β) θα κινηθεί προς τα κάτω.
γ) Θα παραμείνει ακίνητο.
Να δικαιολογήσετε αναλυτικά τις απαντήσεις σας.
ii) Αν το πλάτος κάθε κύματος είναι Α=0,2m, αφού βρείτε την εξίσωση της απομάκρυνσης της ταλάντωσης του σημείου Μ, να υπολογίσετε τη χρονική στιγμή t1=2/3 s:
α) την τιμή της απομάκρυνσης του σημείου Μ.
β) την τιμή της ταχύτητας ταλάντωσης του Μ.
ή

Τετάρτη, 22 Νοεμβρίου 2017

Τρεις Θαυμάσιες λύσεις !!!

3)   Ένα σώμα μάζας 2kg εκτελεί εξαναγκασμένη ταλάντωση με την επίδραση περιοδικής εξωτερικής δύναμης F=F0ημ20πt και με πλάτος 0,2m, ενώ δέχεται δύναμη απόσβεσης της μορφής Fαπ=-2υ (S.Ι.). Σε μια στιγμή βρίσκεται σε σημείο Α στη θέση x=-0,2m.
i)  Να βρεθεί η ταχύτητά του τη στιγμή που φτάνει σε σημείο Β στη θέση xΒ=0,1m.
ii) Να υπολογιστεί η δυναμική του ενέργεια στις θέσεις Α και Β.

Διαβάστε περισσότερα…
ή

Σάββατο, 18 Νοεμβρίου 2017

Μια αρχή στα κύματα

Κατά μήκος ενός γραμμικού ελαστικού μέσου και από τα αριστερά προς τα δεξιά διαδίδεται χωρίς απώλειες ένα αρμονικό κύμα, το οποίο τη στιγμή t0=0 φτάνει σε ένα σημείο Ο, το οποίο λαμβάνουμε ως αρχή ενός προσανατολισμένου άξονα x, με την προς τα δεξιά κατεύθυνση ως θετική. Το σημείο Ο ξεκινά την ταλάντωσή του προς τα πάνω (θετική φορά του άξονα y) και εκτελεί 10 πλήρεις ταλαντώσεις σε χρονικό διάστημα 12s, διανύοντας στο μεταξύ διάστημα 8m. Το κύμα φτάνει σε ένα σημείο Β, στη θέση xΒ=x1=2,2m τη χρονική στιγμή t1=1,1s.
 i)  Να γράψετε τις εξισώσεις για την απομάκρυνση σε συνάρτηση με το χρόνο, για τις ταλαντώσεις που θα εκτελέσουν τα σημεία Ο και Β.
ii) Να βρεθεί η εξίσωση του κύματος.
iii) Να σχεδιάστε το στιγμιότυπο του κύματος τη στιγμή  t1 που το κύμα φτάνει στο σημείο Β και για την περιοχή του θετικού ημιάξονα. Ποια η απομάκρυνση του σημείου Ο την παραπάνω χρονική στιγμή;
iv) Ποια χρονική στιγμή t2 το σημείο Β, θα απέχει κατά 0,1m από τη θέση ισορροπίας του, για πρώτη φορά; Πόση είναι η επιτάχυνσή του τη στιγμή αυτή; Να σχεδιάστε την μορφή του μέσου (του θετικού ημιάξονα) την στιγμή t2 και να σημειώστε πάνω στο διάγραμμα την ταχύτητα και την επιτάχυνση  του σημείου Β.
ή

Κυριακή, 12 Νοεμβρίου 2017

Άλλη μια σύνθεση ταλαντώσεων


Ένα σώμα μάζας 0,2kg ταλαντώνεται με εξίσωση:
i)  Να αποδείξετε ότι η κίνηση του σώματος είναι αρμονική συνάρτηση του χρόνου και να υπολογίστε το πλάτος και την αρχική φάση  της απομάκρυνσης.
ii)  Τη χρονική στιγμή t1=0,25s να βρεθούν:
α) Ο ρυθμός μεταβολής της ορμής του σώματος.
β) Ο ρυθμός μεταβολής της κινητικής του ενέργειας.

ή



Τετάρτη, 1 Νοεμβρίου 2017

Η διεγείρουσα δύναμη αφαιρεί ενέργεια;


Ένα  σώμα μάζας m=0,1kg, δένεται στο άκρο ιδανικού ελατηρίου σταθεράς k=8Ν/m και με την επίδραση μιας αρμονικής εξωτερικής δύναμης, της μορφής:
Fεξ=F0∙ημ(10t+3π/4)
εκτελεί ταλάντωση με απομάκρυνση x=0,5∙ημ(10t)   (S.Ι.), ενώ δέχεται και δύναμη απόσβεσης της μορφής Fαπ=-b∙υ .
i)  Να βρεθεί το πλάτος F0 της εξωτερικής δύναμης και η σταθερά απόσβεσης b.
ii) Να υπολογιστεί η μέγιστη κινητική και η μέγιστη δυναμική ενέργεια στη διάρκεια της ταλάντωσης.
iii) Να υπολογιστούν η κινητική και η δυναμική ενέργεια τη χρονική στιγμή t1=π/30s. Ποιοι οι αντίστοιχοι ρυθμοί μεταβολής, των δύο μορφών ενέργειας τη στιγμή αυτή;
iv) Για την παραπάνω χρονική στιγμή, να βρεθεί η ισχύς της εξωτερικής δύναμης και ο ρυθμός με τον οποίο η μηχανική ενέργεια μετατρέπεται σε θερμική εξαιτίας της δύναμης απόσβεσης.
Να σχολιαστούν τα αποτελέσματα.
Δίνεται ημ(π/12) ≈ 0,26 .
ή



Σάββατο, 28 Οκτωβρίου 2017

Μια απλή αρμονική ταλάντωση και μια εξαναγκασμένη

Ένα σώμα μάζας 0,5kg είναι δεμένο στο άκρο ιδανικού ελατηρίου σταθεράς k=18Ν/m κι εκτελεί ΑΑΤ με εξίσωση απομάκρυνσης x=0,2∙ημ(ωt)  (μονάδες στο S.Ι.) σε λείο οριζόντιο επίπεδο, γύρω από τη θέση φυσικού μήκους του ελατηρίου Ο.
i) Να βρεθούν οι εξισώσεις της κινητικής, της δυναμικής και της ενέργειας ταλάντωσης σε συνάρτηση με το χρόνο και να παρασταθούν γραφικά στους ίδιους άξονες.
ii) Το ίδιο σύστημα τίθεται σε εξαναγκασμένη ταλάντωση με την επίδραση εξωτερικής περιοδικής δύναμης, ενώ ταυτόχρονα δέχεται από το περιβάλλον του και δύναμη απόσβεσης της μορφής Fαπ=-bυ. Μετά την αποκατάσταση σταθερού πλάτους ταλάντωσης,  γύρω από την ίδια θέση ισορροπίας Ο, λαμβάνοντας κάποια στιγμή ως αρχή μέτρησης του χρόνου, έχουμε την απομάκρυνση από την θέση ισορροπίας Ο, να υπακούει στην εξίσωση x=0,2∙ημ(5t)  (S.Ι.).
α) Να βρεθούν οι εξισώσεις υ=υ(t) και α=α(t) της ταχύτητας και της επιτάχυνσης του σώματος σε συνάρτηση με το χρόνο.
β) Να βρεθούν οι εξισώσεις της κινητικής και της δυναμικής ενέργειας σε συνάρτηση με το χρόνο και να παρασταθούν γραφικά στους ίδιους άξονες.
γ) Το άθροισμα Κ+U των δύο παραπάνω ενεργειών παραμένει σταθερό στη διάρκεια της ταλάντωσης; Να σχολιάστε το συμπέρασμα που καταλήγετε παράλληλα με την πρόταση ότι «στη διάρκεια της εξαναγκασμένης ταλάντωσης η ενέργεια που προσφέρεται στο σύστημα (μέσω της εξωτερικής δύναμης) αντισταθμίζει τις απώλειες (που οφείλονται στις δυνάμεις απόσβεσης) και έτσι το πλάτος της ταλάντωσης διατηρείται σταθερό».
ή


Κυριακή, 22 Οκτωβρίου 2017

Τίποτα δεν πάει χαμένο…

Στην προηγούμενη ανάρτηση «Με την κρούση, κόβουμε και το νήμα» …με κατηγόρησε ο Βασίλης, ότι έκοψα το νήμα και …πήγε χαμένο!
Δεν ήξερε ότι το ένα κομμάτι μήκους l=20cm, θα το χρησιμοποιούσα στο επόμενο «πείραμα»!!! Το δίνω….
Δυο πλάκες με μάζες m1=1kg και m2=9kg ηρεμούν στην ίδια κατακόρυφη, στα άκρα δύο ελατηρίων με σταθερές k1=40Ν/m και k2=160Ν/m αντίστοιχα, απέχοντας κατά h=1,2m. Μετακινούμε τα σώματα κατακόρυφα και τα δένουμε με το νήμα μήκους l=20cm, όπως στο σχήμα.
Σε μια στιγμή κόβουμε (ξανά!!!) το νήμα, οπότε τα σώματα αρχίζουν να ταλαντώνονται.
i) Να βρεθεί το πλάτος ταλάντωσης κάθε σώματος.
ii) Σε πόσο χρόνο η απόσταση των δύο σωμάτων θα γίνει ξανά 20cm για πρώτη φορά;
ή

Σάββατο, 21 Οκτωβρίου 2017

Με την κρούση, κόβουμε και το νήμα

Ένα σώμα Σ μάζας m=4kg ηρεμεί δεμένο στο άκρο ενός ιδανικού ελατηρίου σταθεράς k=40Ν/m, σε λείο οριζόντιο επίπεδο. Μετακινούμε το σώμα προς τα αριστερά συσπειρώνοντας το ελατήριο κατά Δl και στη θέση αυτή το δένουμε με το νήμα, όπως στο κάτω σχήμα.
Ένα δεύτερο σώμα Β της ίδιας μάζας m κινείται στο ίδιο οριζόντιο επίπεδο με διεύθυνση τον άξονα του ελατηρίου, με σταθερή ταχύτητα υ0=1m/s. Τα δυο σώματα συγκρούονται κεντρικά και ελαστικά τη στιγμή t0=0. Τη στιγμή της κρούσης, με ένα ψαλίδι, κόβουμε ταυτόχρονα και το νήμα που συγκρατούσε το σώμα Σ. Μετά την κρούση το Σ κινείται προς τα αριστερά μέχρι να μηδενιστεί στιγμιαία η ταχύτητά του τη στιγμή t1=1/3s.
i)  Να βρεθούν οι ταχύτητες των δύο σωμάτων μετά την κρούση τους.
ii) Να βρεθεί η μεταβολή της φάσης της απομάκρυνσης του σώματος Σ, από την στιγμή της κρούσης έως τη στιγμή t1.
iii) Να βρεθεί η αρχική συσπείρωση Δl του ελατηρίου.
iv) Αν τα δυο σώματα συγκρούονται ξανά κεντρικά και ελαστικά τη στιγμή t2, ζητούνται:
 α) Η απόσταση των δύο σωμάτων, όταν το ελατήριο αποκτήσει το φυσικό μήκος του, για πρώτη φορά.
 β) Πόσο καθυστέρησε η απόκτηση του φυσικού μήκους του ελατηρίου, εξαιτίας της δεύτερης κρούσης μεταξύ των σωμάτων;
γ)  Θεωρώντας τη θέση φυσικού μήκος του ελατηρίου, ως αρχή ενός οριζόντιου άξονα x, με θετική φορά προς τα δεξιά, να γράψετε τις συναρτήσεις x=x(t), της θέσης κάθε σώματος σε συνάρτηση με το χρόνο και να γίνουν οι γραφικές παραστάσεις τους.
Δίνεται ότι η διάρκεια κάθε κρούσης είναι αμελητέα, τα σώματα θεωρούνται υλικά σημεία αμελητέων διαστάσεων και π2≈10.
ή