Κυριακή, 30 Απριλίου 2017

Προς τα πού θα στραφεί;


Μια λεπτή ομογενής ράβδος ΑΒ μάζας 2m μπορεί να στρέφεται γύρω από σταθερό οριζόντιο άξονα που περνά από το σημείο της Ρ, όπου (ΑΡ)= ¼ (ΑΒ), ενώ στα  δυο άκρα της κρέμονται μέσω νημάτων δύο σώματα. Το Σ1 μάζας m και το Σ2 μάζας 4m. Το σύστημα συγκρατείται ώστε η ράβδος να είναι οριζόντια. Σε μια στιγμή αφήνουμε ελεύθερο το σύστημα να κινηθεί.
Η ράβδος θα:
i) περιστραφεί δεξιόστροφα
ii) περιστραφεί αριστερόστροφα
iii) ισορροπήσει.

Σάββατο, 29 Απριλίου 2017

Κάποια στιγμή το παιχνίδι τελειώνει… Γ.

Μια μικρή σφαίρα Σ μάζας m1=0,5kg ηρεμεί στο άκρο κατακόρυφου νήματος, μήκους l=0,9m, το άλλο άκρο του οποίου έχει προσδεθεί σε σταθερό σημείο Ο. Μετακινούμε τη σφαίρα φέρνοντάς την στη θέση Α όπου το νήμα είναι οριζόντιο (αλλά και τεντωμένο) και την αφήνουμε να κινηθεί. Μετά από λίγο το νήμα σχηματίζει γωνία θ=30° με την οριζόντια διεύθυνση, για πρώτη φορά, θέση Β.
i) Να υπολογίστε την τάση του νήματος στη θέση Β, καθώς και τον ρυθμό μεταβολής της γωνιακής ταχύτητας της σφαίρας.
ii) Να βρεθεί η στροφορμή της σφαίρας, καθώς και ο αντίστοιχος ρυθμός μεταβολής της, ως προς το σημείο Ο.
Τη στιγμή που η σφαίρα Σ φτάνει στη θέση Β, το νήμα συναντά ένα καρφί, στο σημείο Κ, όπου (ΟΚ)=x, πάνω στο οποίο το νήμα εκτρέπεται, με αποτέλεσμα μετά από λίγο η σφαίρα να φτάνει στη θέση Γ,  έχοντας οριζόντια ταχύτητα υ1. Στη θέση αυτή η σφαίρα Σ συγκρούεται κεντρικά και ελαστικά με δεύτερη σφαίρα μάζας m2=1,5kg η οποία κινείται αντίθετα με ταχύτητα μέτρου υ2=1m/s. Αμέσως μετά την κρούση, η δεύτερη σφαίρα αποκτά ταχύτητα υ2΄=1,5m/s με  φορά προς τα δεξιά.
iii) Να υπολογίσετε την ταχύτητα της σφαίρας Σ ελάχιστα πριν και ελάχιστα μετά την κρούση.
iv) Να υπολογιστεί η απόσταση (ΟΚ)=x, στην οποία βρίσκεται το καρφί που εκτρέπει το νήμα.
Δίνεται g=10m/s2, ημθ= ½ και συνθ =√3/2.
 ή

Κάποια στιγμή το παιχνίδι τελειώνει… Γ.

Πέμπτη, 27 Απριλίου 2017

Μια ταλάντωση και μια διπλή τροχαλία


Μια διπλή τροχαλία, αποτελείται από δύο ομόκεντρους ομογενείς δίσκους με ακτίνες r=0,1m και R=0,2m και  μπορεί να στρέφεται γύρω από τον σταθερό οριζόντιο άξονά της. Στην μεγάλη τροχαλία έχουμε τυλίξει ένα αβαρές και μη εκτατό νήμα, στο άκρο του οποίου μέσω ενός ιδανικού ελατηρίου σταθεράς k=100Ν/m κρέμεται ένα σώμα Σ μάζας m=4kg. Γύρω από την μικρή τροχαλία, έχει τυλιχθεί ένα δεύτερο αβαρές και μη ελαστικό νήμα, το άλλο άκρο του οποίου δένεται σε σταθερό σημείο ενός τοίχου, ώστε το νήμα να είναι οριζόντιο, όπως στο σχήμα, με αποτέλεσμα το σύστημα να ισορροπεί.
i) Να υπολογίσετε την τάση του οριζόντιου νήματος
Εκτρέπουμε το σώμα Σ κατακόρυφα προς τα κάτω κατά y1 και για t=0, το αφήνουμε να κινηθεί.
ii) Τι τιμές μπορεί να πάρει η αρχική εκτροπή y1, ώστε στη συνέχεια να μην μηδενιστεί η τάση του οριζόντιου νήματος.
iii) Αν y1=0,2m, να αποδείξετε ότι το Σ θα εκτελέσει ΑΑΤ και στη συνέχεια να βρείτε πώς μεταβάλλεται η τάση του οριζόντιου νήματος, σε συνάρτηση με το χρόνο, κάνοντας και τη γραφική της παράσταση.
iv) Κάποια στιγμή t1 κόβουμε το οριζόντιο νήμα. Να βρείτε το ρυθμό μεταβολής της στροφορμής ως προς τον άξονα περιστροφής της τροχαλίας,  του συστήματος τροχαλία-σώμα Σ σε συνάρτηση με το χρόνο, κάνοντας και τη γραφική της παράσταση, για t>t1.
v) Αν t1=14π/15 s, ποιος ο ρυθμός μεταβολής της στροφορμής της τροχαλίας, ως προς τον άξονα περιστροφής της, αμέσως μόλις κόψουμε το νήμα;
Δίνεται g=10m/s2.
ή
Μια ταλάντωση και μια διπλή τροχαλία

Δευτέρα, 24 Απριλίου 2017

Δυνάμεις από και προς… σε κύλινδρο που ισορροπεί

Ένας κύλινδρος Α βάρους w ισορροπεί βυθισμένος σε υγρό, όπως στο διπλανό σχήμα (θέση (1)), όπου το μισό ύψος του είναι έξω από το υγρό. Προκειμένου να τον βυθίσουμε πλήρως, τοποθετούμε πάνω του έναν δεύτερο κύλινδρο Β. Το πείραμα προφανώς πραγματοποιείται εντός της ατμόσφαιρας (δεν θα μπορούσε άλλωστε να συμβεί και διαφορετικά…)
i) Η δύναμη που ασκεί ο κύλινδρος Α στο υγρό στη θέση (1) είναι:
α) μικρότερη του βάρους w,
β) ίση με το βάρος,
γ) μεγαλύτερη από το βάρος του κυλίνδρου.
ii) Στη θέση (2) το υγρό ασκεί στον κύλινδρο Α δύναμη μέτρου:
α) F1=w,  β) F1=2w,  γ) F1>2w
ή
Δυνάμεις από και προς… σε κύλινδρο που ισορροπεί


Τετάρτη, 19 Απριλίου 2017

Μια κρούση ράβδου με υλικό σημείο

Ένα υλικό σημείο Σ μάζας m είναι δεμένο στο άκρο νήματος μήκους ℓ, το άλλο άκρο του οποίου είναι δεμένο σε σταθερό οριζόντιο άξονα Ο. Γύρω από τον ίδιο άξονα μπορεί να στρέφεται χωρίς τριβές και μια ομογενής λεπτή ράβδος (ΟΑ) της ίδιας μάζας και μήκους επίσης ℓ. Αφήνουμε ταυτόχρονα τα δυο σώματα να κινηθούν σε κατακόρυφο επίπεδο, από την οριζόντια θέση, όπως στο σχήμα.

i) Το σώμα Σ θα συγκρουστεί με το άκρο Α της ράβδου:
  α) στην κατακόρυφη θέση (1),   β) δεξιά της θέσης (1),   γ) αριστερά της θέσης (1)
ii) Ελάχιστα πριν την κρούση μεγαλύτερη κινητική ενέργεια έχει:
α) Το σώμα Σ, β) η ράβδος (ΟΑ), γ) έχουν ίσες κινητικές ενέργειες.
iii) Ελάχιστα πριν την κρούση μεγαλύτερη κατά μέτρο ταχύτητα έχει:
α) Το σώμα Σ,  β) το άκρο Α της ράβδου, γ) Έχουν ταχύτητες ίσου μέτρου.
iv) Αν ακολουθήσει πλαστική κρούση και το σώμα Σ κολλήσει στη ράβδο, τότε αμέσως μετά το στερεό που προκύπτει, θα περιστραφεί με την φορά των δεικτών του ρολογιού ή αντίθετα;
Δίνεται η ροπή αδράνειας της ράβδου ως προς το άκρο της Ο: Ι= 1/3 mℓ2.
ή
Μια κρούση ράβδου με υλικό σημείο

Τρίτη, 18 Απριλίου 2017

Η ράβδος στο «πλευρό» του δίσκου.

Ο ξύλινος δίσκος του σχήματος μάζας (56/9)kg και ακτίνας R=0,3m, μπορεί να στρέφεται, χωρίς τριβές, γύρω από σταθερό οριζόντιο άξονα ο οποίος είναι κάθετος στο επίπεδό του και διέρχεται από το κέντρο του Ο. Καρφώνουμε στο άκρο μιας ακτίνας του δίσκου, το μέσον Μ μιας ομογενούς ράβδου ΑΒ μάζας 12kg και μήκους 0,8m, κατασκευάζοντας έτσι το στερεό s. Αφήνουμε το στερεό s ελεύθερο να κινηθεί από τη θέση, όπου η ράβδος ΑΒ είναι κατακόρυφη, όπως στο σχήμα.
i) Για τη στιγμή αμέσως μόλις αφέθηκε το στερεό να κινηθεί, να βρεθούν:
α) Η γωνιακή επιτάχυνση του s.
β) Οι επιταχύνσεις των άκρων Α και Β της ράβδου.
γ) Οι ρυθμοί μεταβολής της στροφορμής, ως προς τον άξονα περιστροφής στο Ο:
a) του στερεού s,    b) του δίσκου,   c) της ράβδου.
ii) Για τη στιγμή που η ράβδος γίνεται οριζόντια για πρώτη φορά, να βρεθούν:
α) Οι ταχύτητες των άκρων Α και Β της ράβδου.
β) Η στροφορμή της ράβδου ως προς:
a) Τον άξονα περιστροφής στο Ο,  
b) Οριζόντιο άξονα, κάθετο στο επίπεδο του σχήματος, ο οποίος περνά από το μέσον της Μ.
γ) Η κινητική ενέργεια της ράβδου.
Δίνεται η ροπή αδράνειας του δίσκου ως προς τον άξονα περιστροφής του Ι1= ½ m1R2, η ροπή αδράνειας της ράβδου ως προς κάθετο άξονα που περνά από το μέσον της Μ Ι2= (1/12)m2l2 και g=10m/s2.
ή
Η ράβδος στο «πλευρό» του δίσκου.

Τετάρτη, 12 Απριλίου 2017

Δυο διαδοχικές «κρούσεις»

Ένας οριζόντιος δίσκος μάζας Μ=18kg και ακτίνας R=1m μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό κατακόρυφο άξονα z, που περνά από το κέντρο του Ο. Στον άξονα περιστροφής έχουμε περάσει ένα μικρό δακτυλίδι, το οποίο μέσω αβαρούς (τεντωμένου) νήματος μήκους l=0,5m συνδέεται με σώμα Σ2, το οποίο εμφανίζει με το δίσκο
συντελεστή τριβής μ=0,4 και το οποίο ηρεμεί. Σε μια στιγμή ένα βλήμα το οποίο κινείται οριζόντια με ταχύτητα μέτρου υ0=200m/s κάθετα  στο νήμα, σφηνώνεται στο σώμα  Σ2, δημιουργώντας ένα συσσωμάτωμα Σ μάζας m=4kg, το οποίο αποκτά αρχική ταχύτητα υΣ=20m/s.
i)  Να υπολογίσετε την απώλεια της μηχανικής ενέργειας η οποία οφείλεται στην κρούση.
ii) Ποια η τάση του νήματος, αμέσως μετά την κρούση;
iii) Κάποια στιγμή η ταχύτητα του συσσωματώματος έχει μέτρο u=10m/s. Για τη στιγμή αυτή να υπολογιστούν:
α) Ο ρυθμός μεταβολής της κινητικής ενέργειας του συσσωματώματος Σ.
β) Ο αντίστοιχος ρυθμός μεταβολής της κινητικής ενέργειας του δίσκου.
iv) Πόση είναι η συνολική μηχανική ενέργεια που εμφανίζεται ως θερμική, εξαιτίας της τριβής μεταξύ του Σ και του δίσκου, μέχρι που να σταματήσει η ολίσθηση του συσσωματώματος πάνω στο δίσκο;
Δίνεται η ροπή αδράνειας του δίσκου ως προς τον άξονα z, Ι= ½ ΜR2 και g=10m/s2.
ή
Δυο διαδοχικές «κρούσεις»

Κυριακή, 9 Απριλίου 2017

Ένας κυλινδρικός φλοιός σε ένα σκαλοπάτι. Συνέχεια.

2. Το σκαλοπάτι δεν είναι λείο.
Ένας λεπτός κυλινδρικός φλοιός, μάζας Μ=20kg και ακτίνας R=50cm, φέρει σχισμή βάθους y=10cm, εντός της οποίας έχουμε τυλίξει ένα αβαρές νήμα. Το σώμα ηρεμεί σε λείο οριζόντιο επίπεδο, σε επαφή με σκαλοπάτι ύψους h=20cm, με το οποίο εμφανίζει τριβή με συντελεστές τριβής μ=μs=0,5. Σε μια στιγμή ασκούμε μια οριζόντια δύναμη F=20Ν στο άκρο Α του νήματος χωρίς να κινηθεί ο φλοιός.
i) Να υπολογίσετε την τριβή και την κάθετη αντίδραση που ασκείται στον κυλινδρικό φλοιό, από το σκαλοπάτι. 
ii)  Αυξάνουμε σιγά-σιγά το μέτρο της δύναμης F με σκοπό να κινηθεί ο φλοιός. Να εξετάσετε τι πρόκειται να συμβεί πρώτα:
 α) Ο φλοιός θα εκτελέσει περιστροφική κίνηση χωρίς να ανέβει στο σκαλοπάτι.
 β) Ο κυλινδρικός φλοιός θα αρχίσει να ανεβαίνει στο σκαλοπάτι, εκτελώντας σύνθετη κίνηση.
iii) Επαναλαμβάνουμε το πείραμα ασκώντας οριζόντια δύναμη F1=120Ν, με αποτέλεσμα  το στερεό να ανέβει στο σκαλοπάτι.
α) Να υπολογιστεί η αρχική επιτάχυνση του κέντρου Ο, του κυλινδρικού φλοιού.
β) Ποια τιμή παίρνει η παραπάνω επιτάχυνση μόλις το κέντρο Ο απέχει κατά h1=60cm από το οριζόντιο επίπεδο;
Δίνεται η ροπή αδράνειας του φλοιού, ως προς τον άξονα περιστροφής του Ι= ½ mR2 και g=10m/s2.
ή
Ένας κυλινδρικός φλοιός σε  ένα σκαλοπάτι. Συνέχεια.


Πέμπτη, 6 Απριλίου 2017

Ένας κυλινδρικός φλοιός σε ένα σκαλοπάτι.

1. Το σκαλοπάτι είναι λείο.
Ένας λεπτός κυλινδρικός φλοιός, μάζας Μ=20kg και ακτίνας R=50cm, φέρει σχισμή βάθους y=10cm, εντός της οποίας έχουμε τυλίξει ένα αβαρές νήμα. Το σώμα ηρεμεί σε οριζόντιο επίπεδο, με το οποίο εμφανίζει συντελεστές τριβής μ=μs=0,5, σε επαφή με λείο σκαλοπάτι, ύψους h=20cm. Σε μια στιγμή ασκούμε μια οριζόντια δύναμη F=20Ν στο άκρο Α του νήματος χωρίς να κινηθεί ο φλοιός.
i)  Να υπολογίσετε τα μέτρα των δυνάμεων που ασκούνται στον κυλινδρικό φλοιό.
ii)  Αυξάνουμε το μέτρο της δύναμης στην τιμή F1=100Ν και παρατηρούμε ότι ο φλοιός περιστρέφεται, χωρίς να ανεβαίνει στο σκαλοπάτι. Για τη στιγμή που έχει ξετυλιχθεί νήμα μήκους l=1m:
α) Πόση είναι η κινητική ενέργεια του φλοιού;
β) Με ποιο ρυθμό αυξάνεται η κινητική του ενέργεια;
iii) Επαναλαμβάνουμε το πείραμα αυξάνοντας το μέτρο της ασκούμενης δύναμης στην τιμή F3=300Ν με αποτέλεσμα  το στερεό να ανέβει στο σκαλοπάτι.
α) Να υπολογιστεί η αρχική επιτάχυνση του κέντρου Ο, του κυλινδρικού φλοιού.
β) Ποια τιμή παίρνει ο ρυθμός μεταβολής του μέτρου της ταχύτητας του κέντρου Ο, στη θέση όπου το Ο απέχει κατά h1=60cm από το οριζόντιο επίπεδο; 
Δίνεται η ροπή αδράνειας του φλοιού, ως προς τον άξονα περιστροφής του Ι= ½ mR2 και g=10m/s2.
ή
Ένας κυλινδρικός φλοιός σε  ένα σκαλοπάτι.

Τετάρτη, 5 Απριλίου 2017

Διερευνώντας την ανατροπή και την ολίσθηση.

Σε οριζόντιο επίπεδο ηρεμεί ένας «όρθιος» ομογενής κύλινδρος, μάζας Μ=60kg, ακτίνας R και ύψους 4R. Ασκούμε στο σημείο Α, το οποίο απέχει κατακόρυφη απόσταση y=R από το κέντρο μάζας Ο, μια οριζόντια δύναμη F, όπως στο σχήμα (η προβολή του κυλίνδρου στο επίπεδο κίνησής του).
i)  Ποιο το ελάχιστο μέτρο της δύναμης F για να ανατραπεί ο κύλινδρος, αν ο συντελεστής τριβής είναι αρκετά μεγάλος, ώστε να μην προηγηθεί ολίσθηση του κυλίνδρου;
ii)  Στο σημείο Α ασκούμε μεταβλητή οριζόντια δύναμη που το μέτρο της μεταβάλλεται με το χρόνο, σύμφωνα με την εξίσωση F=4t (S.Ι.). Αν οι συντελεστές τριβής μεταξύ κυλίνδρου και επιπέδου έχουν τιμές μ=μs=0,3 ο κύλινδρος πρώτα θα ανατραπεί ή θα ολισθήσει;
iii) Ποια χρονική  στιγμή θα ανατραπεί ο κύλινδρος;
iv)  Να υπολογιστεί η κινητική ενέργεια του κυλίνδρου τη στιγμή που αρχίζει να ανατρέπεται.
Δίνεται g=10m/s2.

Δευτέρα, 3 Απριλίου 2017

Το έργο και η γωνιακή ταχύτητα του δίσκου

Ένας ομογενής δίσκος μάζας 40kg και ακτίνας 0,5m μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό κατακόρυφο άξονα z, ο οποίος είναι κάθετος στο επίπεδο του δίσκου και περνά από το κέντρο του Ο. Γύρω από το δίσκο τυλίγουμε ένα αβαρές νήμα, στο άκρο Α του οποίου, ασκούμε μια σταθερή οριζόντια δύναμη μέτρου F=10Ν.
i) Να υπολογιστεί η γωνιακή ταχύτητα του δίσκου τη στιγμή t1 όπου το άκρο Α του νήματος έχει μετατοπισθεί κατά x1=4m.
ii) Ποιος ο ρυθμός μεταβολής της κινητικής ενέργειας του δίσκου τη στιγμή t1;
Απελευθερώνουμε τον παραπάνω  δίσκο από τον άξονα και τον τοποθετούμε σε λείο οριζόντιο επίπεδο.
iii) Να βρεθεί ξανά η γωνιακή ταχύτητα περιστροφής του δίσκου τη στιγμή που το άκρο Α του νήματος έχει μετατοπισθεί κατά 4m.
iv) Ποιος θα είναι τώρα ο αντίστοιχος ρυθμός μεταβολής της κινητικής ενέργειας του δίσκου την παραπάνω στιγμή;
v) Επαναλαμβάνουμε το πείραμα, αλλά τώρα μεταβάλλουμε το μέτρο της δύναμης σε συνάρτηση με το χρόνο σύμφωνα με την εξίσωση F=2t  (S.Ι.), διατηρώντας σταθερή την κατεύθυνσή της. Να βρεθεί η κινητική ενέργεια του δίσκου τη χρονική στιγμή t1=10s.
Δίνεται η ροπή αδράνειας του δίσκου, ως προς κάθετο άξονα που περνά από το κέντρο του Ι= ½ mR2.

Σάββατο, 1 Απριλίου 2017

Τράβηξε για να δούμε αν τα καταφέρεις…

Σε λείο οριζόντιο επίπεδο ηρεμεί ένα ομογενές δοκάρι ΑΒ, μήκους 4m και μάζας Μ=50kg. Θέλοντας ένα παιδί να το ανασηκώσει, δένει το ένα του άκρο Α με σχοινί, το οποίο αφού περάσει από μια τροχαλία, στο άλλο του άκρο τραβάει ασκώντας δύναμη F, όπως στο σχήμα, όπου το τμήμα του νήματος μεταξύ τροχαλίας και δοκαριού, είναι κατακόρυφο.
i)  Αν F=100Ν το δοκάρι δεν ανασηκώνεται. Να υπολογίσετε τη δύναμη που ασκείται στο δοκάρι από το έδαφος και τη ροπή της ως προς το άκρο Α, αν:
 α) Δεν αναπτύσσονται τριβές ανάμεσα στο σχοινί και την τροχαλία.
 β) Υπάρχουν τριβές, με αποτέλεσμα να μην γλιστράει το νήμα στο αυλάκι της τροχαλίας.
ii) Αν κάποια στιγμή (t0=0) το παιδί αυξήσει το μέτρο της δύναμης στην τιμή F1=300Ν, το δοκάρι αρχίζει να ανασηκώνεται. Να υπολογίσετε την επιτάχυνση που θα αποκτήσει, αμέσως μετά (t=0+), το άκρο Α του δοκαριού, όταν:
 α) Η τροχαλία έχει μάζα m=10kg και το σχοινί δεν γλιστράει στο αυλάκι της.
 β) Η τροχαλία έχει μάζα m=10kg και δεν αναπτύσσονται τριβές μεταξύ τροχαλίας και σχοινιού.
 γ) Η τροχαλία έχει μάζα m=0,5kg και το σχοινί δεν γλιστράει στο αυλάκι της.
Δίνονται: Η ροπή αδράνειας της τροχαλίας ως προς τον άξονά της Ι1= ½ mR2, η ροπή αδράνειας του δοκαριού ως προς κάθετο άξονα που περνά από το μέσον του Ι2= (1/12)Μl2 και g=10m/s2.
ή
Τράβηξε για να  δούμε αν τα καταφέρεις…


Δευτέρα, 27 Μαρτίου 2017

Η επιτάχυνσης μιας σανίδας στον πάγο

Σε μια παγωμένη λίμνη ηρεμεί οριζόντια, μια ομογενής σανίδα ΑΒ μήκους l=4m και μάζας m=12kg. Σε μια στιγμή t0=0, δέχεται την επίδραση μιας σταθερής οριζόντιας δύναμης μέτρου F=6Ν, η οποία ασκείται στο σημείο Κ, όπου (ΒΚ)=1m και αρχικά είναι κάθετη στη σανίδα. Τη χρονική στιγμή t1=2s το σημείο εφαρμογής της δύναμης Κ, έχει μετατοπισθεί κατά xΚ=1,6m στην διεύθυνση της ασκούμενης δύναμης, ενώ η σανίδα έχει περιστραφεί κατά γωνία θ, όπως στο σχήμα. Κατά την κίνηση της σανίδας δεν εμφανίζονται τριβές.
i) Να βρεθεί η επιτάχυνση του σημείου Κ, αμέσως μόλις ασκηθεί η δύναμη (για t=0+).
ii) Να υπολογιστεί η γωνία περιστροφής θ της σανίδας.
iii) Πόση ενέργεια μεταφέρεται στη σανίδα μέσω του έργου της δύναμης από 0-t1;
iv) Με ποιο ρυθμό μεταφέρεται ενέργεια στη σανίδα τη στιγμή t1;
ή
Η επιτάχυνσης μιας σανίδας στον πάγο

Παρασκευή, 24 Μαρτίου 2017

Η πτώση της ράβδου.

Μια ομογενής ράβδος μάζας 12kg και μήκους 2,5m συγκρατείται όπως στο σχήμα, σχηματίζοντας με την οριζόντια διεύθυνση γωνία θ=60°, ενώ το κέντρο της Κ απέχει h=4,2m από το λείο οριζόντιο επίπεδο. Σε μια στιγμή αφήνεται να πέσει.
i) Η κίνηση της ράβδου θα είναι:
α) μεταφορική,   β) σύνθετη
Να δικαιολογήσετε την απάντησή σας.
ii) Να υπολογιστεί η ταχύτητα του κέντρου μάζας, τη στιγμή που η ράβδος κτυπάει στο επίπεδο.
iii) Αν η κρούση είναι ελαστική και το κέντρο Κ αποκτήσει (μετά την κρούση) ταχύτητα μέτρου υ2=1,15m/s, διαφορετικής κατεύθυνσης από την κατεύθυνση της ταχύτητας πριν  την κρούση:
 α) Ποια η κατεύθυνση της ταχύτητας υ2;
 β) Να υπολογίσετε τη γωνιακή ταχύτητα της ράβδου μετά την κρούση.
iv) Να υπολογιστούν οι μεταβολές:
  α) της ορμής
  β) της στροφορμής της ράβδου ως προς οριζόντιο άξονα, κάθετο στη ράβδο που διέρχεται από το Κ 
που οφείλονται στην κρούση.
Δίνεται η ροπή αδράνειας της ράβδου ως προς κάθετο άξονα που περνάει από το μέσον της
Ι= 1/12 Μl2 και g=10m/s2.
ή
Η πτώση της ράβδου.

Τετάρτη, 22 Μαρτίου 2017

Η τροχαλία και η κρούση

Στο σχήμα εμφανίζεται το ίδιο σύστημα σε ισορροπία, με την μόνη διαφορά ότι το αβαρές νήμα έχει πολλές φορές τυλιχθεί στο αυλάκι της Α τροχαλίας, σε αντίθεση με το δεύτερο νήμα, που απλά περνά από το αυλάκι της Β.
i) Για την ισορροπία του συστήματος ασκούμε κατακόρυφες δυνάμεις στο μικρότερο σώμα Σ2. Για τα μέτρα τους ισχύει:

ii) Αν καταργήσουμε τις ασκούμενες δυνάμεις, τότε το σώμα Σ1 πέφτει και μετά από λίγο προσκολλάται στο έδαφος, ενώ τα νήματα δεν γλιστρούν στα αυλάκια των τροχαλιών. Στη διάρκεια της πτώσης:
α) Μεγαλύτερη γωνιακή επιτάχυνση αποκτά η τροχαλία Α.
β) Μεγαλύτερη γωνιακή επιτάχυνση αποκτά η τροχαλία Β.
γ) Οι δύο τροχαλίες αποκτούν την ίδια γωνιακή επιτάχυνση.
iii) Αμέσως μετά την πρόσκρουση του Σ1 με το έδαφος, μεγαλύτερη κατά μέτρο γωνιακή επιτάχυνση αποκτά:
α) Η Α τροχαλία,  β) Η Β τροχαλία,  γ) αποκτούν γωνιακές επιταχύνσεις με ίδιο μέτρο.
ή
Η τροχαλία και η κρούση

Κυριακή, 19 Μαρτίου 2017

Άλλη μια ράβδος στρέφεται

Η ομογενής ράβδος του σχήματος μάζας Μ=3kg και μήκους l=2m, είναι αρθρωμένη στο άκρο της Ο, γύρω από το οποίο μπορεί να στρέφεται χωρίς τριβές. Η ράβδος ισορροπεί, κρεμασμένη στο άκρο κατακόρυφου νήματος, το οποίο έχει προσδεθεί στο σημείο Β, όπου (ΒΑ)=0,4m, σχηματίζοντας γωνία θ με την οριζόντια διεύθυνση. Σε μια στιγμή κόβουμε το νήμα, οπότε η ράβδος κατέρχεται και τη στιγμή που γίνεται οριζόντια, το άκρο της Α έχει ταχύτητα υΑ=6m/s.
i)  Για την αρχική θέση (πριν να κοπεί το νήμα), να βρεθεί η τάση του νήματος, καθώς και η γωνία θ που σχηματίζει η ράβδος με την οριζόντια διεύθυνση.
ii) Να βρεθεί η κατακόρυφη επιτάχυνση του μέσου Κ της ράβδου καθώς και η οριζόντια και κατακόρυφη συνιστώσα της δύναμης που ασκείται στη ράβδο από την άρθρωση, στην οριζόντια θέση.
iii) Αναφερόμενοι στην οριζόντια θέση, δυο μαθητές, ο Χ και ο Υ, θέλουν να υπολογίσουν τη στροφορμή και το ρυθμό μεταβολής της στροφορμής ως προς το άκρο Ο (ισοδύναμα ως προς σταθερό οριζόντιο άξονα z κάθετο στο επίπεδο περιστροφής που περνά από το άκρο Ο). Ο Χ θεωρεί την κίνηση στροφική γύρω από τον άξονα z, ο Υ θεωρεί την κίνηση σύνθετη, μια μεταφορική του κέντρου μάζας και μια περιστροφή γύρω από κάθετο άξονα που περνά από το Κ.
Ποιες είναι οι απαντήσεις που θα δώσουν;
iv) Να υπολογιστεί επίσης η στροφορμή και ο αντίστοιχος ρυθμός μεταβολής της ως προς:
 α) σταθερό οριζόντιο άξονα, κάθετο στο επίπεδο περιστροφής που περνά από το μέσον της Κ της ράβδου.
 β) σταθερό οριζόντιο άξονα, κάθετο στο επίπεδο περιστροφής, ο οποίος περνά από το άκρον Α της ράβδου.
Δίνεται η ροπή αδράνειας της ράβδου ως προς κάθετο άξονα που περνά από το μέσον της Ιcm= (1/12)∙ Μl2 και g=10m/s2.
ή
Άλλη μια ράβδος στρέφεται

Πέμπτη, 16 Μαρτίου 2017

Ένας τροχός σε κεκλιμένο επίπεδο

Ένας τροχός μάζας 8kg ισορροπεί σε κεκλιμένο επίπεδο κλίσεως θ, με την επίδραση δύναμης F, η οποία μέσω κατάλληλου μηχανισμού, ασκείται στο κέντρο του Ο, όπως στο σχήμα.
i)  Να υπολογιστούν οι δυνάμεις που ασκούνται στον τροχό.
ii) Σε μια στιγμή (t0=0) αυξάνουμε το μέτρο της δύναμης στην τιμή F1=60Ν. Να υπολογιστεί η ταχύτητα του κέντρου Ο του τροχού τη στιγμή t1=4s.
iii) Τη στιγμή t1, το μέτρο της δύναμης αυξάνεται στην τιμή F2=160Ν.
 α) Να γίνει η γραφική παράσταση της ταχύτητας υcm του κέντρου Ο, σε συνάρτηση με το χρόνο από 0-6s.
β) Να υπολογιστούν τα έργα της δύναμης και της τριβής, από t0 μέχρι τη στιγμή t2=6s.
γ) Να υπολογιστεί ο ρυθμός μεταβολής της κινητικής ενέργειας λόγω περιστροφής του τροχού, τη στιγμή t2.
Δίνονται: Για τον τροχό Ι= ½ ΜR2  ως προς οριζόντιο άξονα, κάθετο στο επίπεδό του που περνά από το κέντρο του Ο, ημθ=0,6 και συνθ=0,8, g=10m/s2, ενώ για τους συντελεστές τριβής μεταξύ τροχού και επιπέδου μ=μs=0,5.
ή
Ένας τροχός σε κεκλιμένο επίπεδο

Κυριακή, 12 Μαρτίου 2017

Μια σφαίρα παίρνει την ανηφόρα

Σε οριζόντιο επίπεδο κυλίεται μια σφαίρα με ταχύτητα κέντρου μάζας υ0cm=6m/s. Σε μια στιγμή συναντά στην πορεία της ένα κεκλιμένο επίπεδο κλίσεως θ (ημθ=0,6), στο οποίο συνεχίζει την κίνησή της, χωρίς να αναπηδήσει.
i)  Αν το κεκλιμένο επίπεδο είναι λείο, σε πόσο ύψος θα ανέβη το κέντρο Ο της σφαίρας;
ii) Αν υπήρχε τριβή, με αποτέλεσμα να συνεχίσει η σφαίρα την κύλισή της, ποιο θα ήταν το αντίστοιχο μέγιστο ύψος ανόδου;
iii) Ποιος ο ελάχιστος συντελεστής οριακής στατικής τριβής, μεταξύ σφαίρας και κεκλιμένου επιπέδου, για την παραπάνω άνοδο;
iii) Αν μεταξύ σφαίρας και κεκλιμένου επιπέδου είχαμε συντελεστές τριβής μ=μορ=0,125, πόση θερμική ενέργεια αναπτύσσεται κατά την άνοδο της σφαίρας κατά μήκος του επιπέδου, αν η ακτίνα της σφαίρας ήταν R=0,2m και η μάζα της 1kg.
Δίνεται η ροπή αδράνειας της σφαίρας Ι= 2/5 mR2, ενώ g=10m/s2.
ή
Μια σφαίρα παίρνει την ανηφόρα