Τετάρτη, 22 Φεβρουαρίου 2017

Ισορροπίες και μια αντίστροφη κύλιση.

Πάνω σε μια μισοβυθισμένη στο έδαφος  σφαίρα, ακτίνας R=(3/π)m, στηρίζεται μια ομογενής δοκός ΑΒ μήκους 6m και βάρους 300Ν, η οποία ισορροπεί οριζόντια με την επίδραση μιας κατακόρυφης δύναμης F, η οποία ασκείται στο άκρο της Β, όπως στο σχήμα.
i) Αν (ΑΓ)=2m, όπου Γ το σημείο της ράβδου το οποίο εφάπτεται της σφαίρας, να υπολογιστεί η δύναμη F, για την παραπάνω ισορροπία.

ii)Αυξάνουμε το μέτρο της ασκούμενης  δύναμης F, διατηρώντας την κατακόρυφη, με αποτέλεσμα το άκρο Β της ράβδου να αρχίσει να ανέρχεται, χωρίς η δοκός να γλιστράει πάνω στη σφαίρα. Με τον τρόπο αυτό, φέρνουμε τη δοκό να ισορροπεί όπως στο σχήμα, ενώ F1=100Ν.
α) Πόσο απέχει το σημείο Δ, σημείο επαφής της δοκού με τη σφαίρα, από το άκρο Α;
β) Ποια γωνία σχηματίζει η δοκός με την οριζόντια διεύθυνση;
γ) Να υπολογιστεί το μέτρο της τριβής που ασκείται στη δοκό.
δ) Ποιος ο ελάχιστος συντελεστής οριακής στατικής τριβής μεταξύ δοκού και σφαίρας για την παραπάνω ισορροπία;
ή
Ισορροπίες και αντίστροφη κύλιση.

Δεν υπάρχουν σχόλια: