Σάββατο, 21 Οκτωβρίου 2017

Με την κρούση, κόβουμε και το νήμα

Ένα σώμα Σ μάζας m=4kg ηρεμεί δεμένο στο άκρο ενός ιδανικού ελατηρίου σταθεράς k=40Ν/m, σε λείο οριζόντιο επίπεδο. Μετακινούμε το σώμα προς τα αριστερά συσπειρώνοντας το ελατήριο κατά Δl και στη θέση αυτή το δένουμε με το νήμα, όπως στο κάτω σχήμα.
Ένα δεύτερο σώμα Β της ίδιας μάζας m κινείται στο ίδιο οριζόντιο επίπεδο με διεύθυνση τον άξονα του ελατηρίου, με σταθερή ταχύτητα υ0=1m/s. Τα δυο σώματα συγκρούονται κεντρικά και ελαστικά τη στιγμή t0=0. Τη στιγμή της κρούσης, με ένα ψαλίδι, κόβουμε ταυτόχρονα και το νήμα που συγκρατούσε το σώμα Σ. Μετά την κρούση το Σ κινείται προς τα αριστερά μέχρι να μηδενιστεί στιγμιαία η ταχύτητά του τη στιγμή t1=1/3s.
i)  Να βρεθούν οι ταχύτητες των δύο σωμάτων μετά την κρούση τους.
ii) Να βρεθεί η μεταβολή της φάσης της απομάκρυνσης του σώματος Σ, από την στιγμή της κρούσης έως τη στιγμή t1.
iii) Να βρεθεί η αρχική συσπείρωση Δl του ελατηρίου.
iv) Αν τα δυο σώματα συγκρούονται ξανά κεντρικά και ελαστικά τη στιγμή t2, ζητούνται:
 α) Η απόσταση των δύο σωμάτων, όταν το ελατήριο αποκτήσει το φυσικό μήκος του, για πρώτη φορά.
 β) Πόσο καθυστέρησε η απόκτηση του φυσικού μήκους του ελατηρίου, εξαιτίας της δεύτερης κρούσης μεταξύ των σωμάτων;
γ)  Θεωρώντας τη θέση φυσικού μήκος του ελατηρίου, ως αρχή ενός οριζόντιου άξονα x, με θετική φορά προς τα δεξιά, να γράψετε τις συναρτήσεις x=x(t), της θέσης κάθε σώματος σε συνάρτηση με το χρόνο και να γίνουν οι γραφικές παραστάσεις τους.
Δίνεται ότι η διάρκεια κάθε κρούσης είναι αμελητέα, τα σώματα θεωρούνται υλικά σημεία αμελητέων διαστάσεων και π2≈10.
ή


Δεν υπάρχουν σχόλια: